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Divisibility theory for ideals

Let R to be a commutative unitary ring.
A non-zero non-unit element is said to be irreducible if it is not a product of 2 non-
units.
Be careful! Irreducible element should not be confused with prime element.
A non-zero non-unit element a in R is called prime if whenever a|bc for some b and
c ∈ R, then a|b or a|c.
In integral domain, every prime element is irreducible but the converse is not true in
general. The converse is true for GCD domain (where every non-zero elements have
greatest common divisor). A UFD domain is a GCD domain which is noetherian.
Moreover while an ideal generated by a prime element is a prime ideal it is not true in
general that an ideal generated by an irreducible ideal.
However, if R is a GCD domain and x is an irreducible element of R then the ideal
generated by x is an irreducible ideal of R.
We want to understand the theory of divisibility in any ring of integer of some extension
of Q for instance, a good theory of divisibility we need to know what are the ”minimal”
generator and a unique decomposition through them on this ring in relation to the
divisibility operation so we need a UFD domain, we need to understand the units.
Note that the ”prime property” is essential to the study of the divisibility theory on Z.
The problem is that already in a quadratic integer ring like K = Z[

√
−5], it can be

shown using norm arguments that the number 3 is irreducible. However, it is not prime
in this ring. Since, for example, 3|(2+

√
−5)(2−

√
−5) = 9 but 3 does not divide either

of the 2 factors. Also

21 = 3× 7 = (1 + 2
√
−5)(1− 2

√
−5)

All this factor occurs to be irreducible in Z[
√
−5]. Thues we have 2 prime decomposi-

tion different up to associated.
As a consequence, even if one could know the prime of OK thanks to the ones of Z, this
would not be enough to understand the arithmetic of OK .
The ideal was to consider the ideal instead of the element and the prime ideal could
take the place of the prime number even if this theory is well-understood for Dedekind
Domains. It turn out to bring very interesting aspect in general.
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Let a, b be two ideals of B, one can define the product as:

ab = {
∑

aibi|ai ∈ a and bi ∈ }

Note that (1) = R , and (1)b = b.

When a = {0}, ab = {0}.

Note that in Z, ideal are principal and if a = (a), b = (b) for some a, b ∈ Z, ab = (ab).

We say that a divide b if b ⊆ a, we write a|b.
In Z, then for any a, b ∈ Z

a|b⇔ (a)|(b)

An ideal p in R is prime if

1. p 6= B;

2. if a, b ∈ B and ab ∈ p then a ∈ p or b ∈ p.

In Z, to be a prime p is characterize by p 6= 1 (i.e (p) 6= R) and for any a, b ∈ R,

(p|a⇒ p|a or p|b)↔ (p|(ab)⇒ p|(a) orp|(b)⇒ (p) is a prime ideal

Remember that p is a prime ideal if and only if R
p

is an integral domain. In partic-

ular, a commutative ring is an integral domain if and only if {0} is a prime ideal.

Prime ideals have also the following essential property satisfied by the prime num-
ber: Let pi and p be prime ideals, where i = 1, ..., n, if p|p1...pn then p|pi for some i.
(Indeed, otherwise, for all i, there is ai ∈ pi\p and a1....an ∈ p, which is a contradiction
with the fact that p is a prime ideal).

A maximal ideal of R is a proper ideal m such that for any ideal a with m|a then
either a = m or a = R.

In Z, to be an irreducible element p is characterize by p 6= 1 (i.e (p) 6= R) and for any
a, b ∈ R,

(a|p⇒ a = 1 or a = p)↔ ((a)|p⇒ p = (a) or (a) = R⇒ (p) is a maximal ideal

Remember that an ideal m is maximal if and only if R/m is a field.
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In particular, maximal ideals are also prime.

Krull’s theorem: Each proper ideal of a commutative ring is contained in at least
one maximal ideal.
In Z, prime ideals corresponds exactly to ideals generated by prime elements. This is only
true because Z is a PID.

GCD We define the sum of two ideal to be

a + b = {a+ b|a ∈ a, b ∈ b}

This corresponds to the notion of GCD for any a, b ∈ Z, (a) + (b) = (gcd(a, b)).

We say that a and b are two ideals are relatively coprime if (1) = a + b.

LCM We now consider the intersection of two ideal a, b,

a ∩ b = {a|a ∈ b and a ∈ b}

In Z, note that ∀a, b ∈ Z, (a) ∩ (b) = (lcm(a, b)).

Operations on ideals Let a, b, c ideals of R. Then

1. a(b + c) = ab + ac

2. a ⊆ b or c ⊆ b, then b ∩ (a + c) = b ∩ a + b ∩ c.

3. If a + b = R, then a ∩ b = ab.

Theoreme: Let a1, ..., an be ideal in R such that ai + aj = R, if a = a1...an, we define
a map

φ : R
a
→ R

a1
⊕ ...⊕ R

an

a 7→ (a+ a1, ..., a+ an)

When R is noetherian, for every ideal a 6= 0 of R, there exist nonzero prime ideal
p1, p2, ..., pr such that p1...pr|a.
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In Dedekind domain

For an integral domain R which is not a field, all of the following conditions are equiv-
alent:

1. Every nonzero proper ideal factors into primes.

2. R is Noetherian, and the localization at each maximal ideal is a Discrete Valuation
Ring.

3. Every fractional ideal of R is invertible.

4. R is an integrally closed, Noetherian domain with Krull dimension one (i.e., every
nonzero prime ideal is maximal).

Suppose now on that R is a Dedekind domain. Denote by K its fraction field.

1. The fractional ideals (i.e. finitely generated submodule of K) form an abelian
group, the ideal group JK of K. The identity element (1) and the inverse of a is

a−1 = {x ∈ K|xa ⊆ R}

(i.e. aa−1 = (1))

2. a|b if and only if there is an ideal such that ac = b.

3. Every fractional ideals a of K different from (0) or (1) admits a unique factoriza-
tion

a =
∏
p

pvp

into nonzero prime ideal pi of R which is unique up to the order of the factors.

4. For any ideals a, b of R,
(a + b)(a ∩ b) = ab

5. The class group ClK = JK/PK fits inside the exact sequence:

1→ R∗ → K∗ → JK → ClK → 1

(When K is a number theory, the class group ClK is finite and the group of units
O∗K is the direct product of the finite cyclic group µ(K) and a free abelian group
of rank r + s − 1 where r is the number of real embedding and s the number if
complex embedding.)

6. Given p1, .... , pn prime ideals. Taking πi ∈ pi
ri\pri+1

i , by CRT there is x ∈ A
such that

x ≡ πi mod pri1 , for any i

That is (x) =
∏n

i=1 p
ri
i a with a coprime with pi for any pi. In other words, vpi is

exactly ri in (x)
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7. if a =
∏

i p
ei
i and b =

∏
i p

fi
i where the p′s are maximal ideal, then

a + b =
∏
i

p
min(ei,fi)
i and a ∩ b =

∏
i

p
max(ei,fi)
i .

Note that a+b is the smallest ideal containing a and b and a∩b is the smallest ideal
contained in a and b. The results follows then from the fact, that

∏
i p

ei
i ⊆

∏
i p

fi
i

if and only if ei ≥ fi, for all i.

8. For any prime ideal p of R, and R ⊆ B Dedekind domain, one always has

pB 6= B

(Indeed, let π ∈ p\p2 (p 6= 0), so that πR = pa with p - a, hence p + a = R.
Writing 1 = b + s, with b ∈ p and s ∈/∈ p and sp ⊆ pa = πR. If one had
pB = B, then it would follow that sB = spB ⊆ πB, so that s = πx, for some
x ∈ B ∩K = R, i.e. s ∈ p, a contradiction)

pB = Pe1
1 ....P

er
r

where Pi are the prime ideal over p (i.e. p = Pi ∩R.

Now, if K is the fraction field of R and B is the integral closure of K in some
finite extension L, we denote by fi = [B/Pi : R/p] the inertia degree.
If L/K separable, we have the fundamental identity

r∑
i=1

eifi = n

Ramification

Let K the fraction field of a Dedekind ring A, L/K a finite extension and B the algebraic
closure of A on L.
Suppose that L/K is separable given by a primitive element θ ∈ B with minimal
polynomial

p(X) ∈ A[X]

So that L = K(θ). Denote by F the conductor of A[θ] the biggest ideal F of B which
is contained in A[θ].

F = {α ∈ B|αB ⊆ A[θ]}

Let p be a prime ideal of A which is relatively prime to the conductor F of A[θ]
and let p̄(X) = p̄1(X)e1 ....p̄r(X)er be the factorization of p(x) mod p into irreductible
p̄i(X) ≡ pi(X) mod p, with all pi(x) ∈ A[x] monic. Then

Pi = pB + pi(θ)B, i = 1, ..., r
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are the different prime ideals of B above p. The inertia degreefi of Pi is the degree of
p̄i(X) and one has pB = Pe1

1 ...P
er
r .

Let p be a prime of A, such that pB = Pe1
1 ...P

er
r is the prime decomposition of pB.

The prime p is said to:

1. split completely (or totally split) in L if r = n = [L = K] (so that ei = fi = 1,
for any i)

2. non split (or in decomposed) if r = 1 (i.e. there is one single prime ideal of L
over p.

3. unramified if all Pi are unramified ,that is ei = 1 and k(Pi)/k(p) is separable,
otherwise it is said ramified.

There are only finitely of prime ideal which are ramified in L.
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Hilbert ramification theory

Let p be a prime ideal of A and P be a prime of B above p. We suppose that L/K is
Galois of Galois group G and |G| = [L : K] = n. Let S be a set of representative of the
coset in G/GP. Let e be the index of ramification of p and f its inertia degree.

L

G (Galois)

DPTP

IP (Galois)

ZP

normal

K

B

B ∩ TP
?�

OO

B ∩ ZP

?�

OO

A = A ∩K
?�

OO

P

all ramification

PT = P ∩ TP

all inertia degree

PZ = P ∩ ZP

totally split

p

pB = (
∏

σ∈G/GP
σ(P))e

PTB = Pe

PZB = Pe

PZBT = PT

pBZ = PZa

with a + PZ = 1

p = P ∩ A

k(P)

GP/IP (normal)

k(PT )

f

PZ

k(p)
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Cyclotomic field

Let K = Q(ζ) with ζ a primitive nth root of unity, K is called a Cyclotomic field.
OK = Z[ζ] is the ring of the integer of K and 1, ζ, ...., ζφ(n) where φ(n) is the Euler
function evaluated at n.
Let n =

∏
p p

vp be the prime factorization of n and, for even prime number p, let fp be
the smallest positive integer such that

pfp ≡ 1 mod n/pvp

Then one has the factorization

pZ[ζ] = (p1....pr)
φ(pvp )

where p1, ..., pr are distinct prime ideals, all of degree fp.

A prime p is ramified if and only if n ≡ 0 mod p except in the case where p = 2 = (4, n).

A prime number p 6= 2 is totally split in Q(ζ) if and only if p ≡ 1 mod n.

Let ξ a primitive q-root of unity, let q∗ = (−1)
q−1
2 q then q∗ = τ 2 where

τ =
∑

a∈(Z/qZ)∗

(a
q

)
ξa

so that
Q(
√
q∗) ⊆ Q(ζ)
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